Решения задач Межрегиональной олимпиады школьников на базе ведомственных образовательных организаций

в 2020-2021 учебном году

9 класс

Очный тур. Вариант 1.

Задача 1. (15 баллов). Автомобиль массой m=2,5 т движется с постоянной скоростью v=54 км/ч по вогнутому мосту с радиусом кривизны R=90 м. С какой силой F автомобиль давит на мост, проезжая его середину? Считать $g = 9.8 \text{ м/c}^2$.

Решение:

На автомобиль в нижней точке вогнутого моста действуют две силы: направленная вертикально вниз сила тяжести mg, и направленная вертикально вверх сила реакции опоры (моста) N. Результирующая этих двух сил направлена к центру кривизны моста (вертикально вверх), называется центростремительной силой, и равна произведению массы автомобиля т на его центростремительное ускорение v2/R:

$$N - mg = m \frac{v^2}{R}.$$

По третьему закону Ньютона F = N.

Следовательно

$$F = N = mg + m\frac{v^2}{R}.$$

Otbet:
$$F = m \left(g + \frac{v^2}{R}\right) = 30750 \text{H}.$$

Задача 2. (15 баллов). Плавая в жидкости с неизвестной плотностью, кубическое тело погружается на глубину h_1 . Плавая в жидкости с другой неизвестной плотностью, это же тело погружается на глубину h_2 Какова будет глубина Н погружения этого тела в жидкости с плотностью, равной средней арифметической плотностей первых двух жидкостей [ρ =(ρ_1 + ρ_2)/2]? Грани погруженного тела В форме куба либо параллельны, перпендикулярны поверхностям жидкостей.

Решение:

Условие равновесия плавающего тела в каждой ИЗ жилкостей записывается следующим образом (S – площадь грани куба):

$$mg = \rho_1 g V_1 = \rho_1 g h_1 S$$

 $mg = \rho_2 g V_2 = \rho_2 g h_2 S$
 $mg = \rho g V = \rho g H S$,

где S – площадь боковой грани куба.

Выразим сумму плотностей ρ_1 и ρ_2 :

$$\rho_1 + \rho_2 = \frac{m}{S} \left(\frac{1}{h_1} + \frac{1}{h_2} \right)$$

Подставим результат в третье исходное уравнение:

$$mg = \frac{m}{2S} \left(\frac{1}{h_1} + \frac{1}{h_2} \right) gHS,$$

Следовательно

$$\frac{1}{H} = \frac{1}{2} \left(\frac{1}{h_1} + \frac{1}{h_2} \right)$$

или

$$\underline{\text{Ответ:}} \qquad H = \frac{2h_1h_2}{h_1+h_2}$$

Задача 3. (20 баллов). Симметричную гранату бросили со скоростью v_0 под углом α к горизонту. В верхней точке траектории граната разорвалась на множество одинаковых осколков. Какую скорость и имеет сразу после взрыва тот осколок, который первым упадет на землю? Максимальная скорость осколков после взрыва v_1

Решение:

В верхней точке траектории (до момента взрыва) граната имеет горизонтальную скорость $vrop = v0 \cos \alpha$ в лабораторной системе отсчета (ЛСО), связанной с поверхностью земли. В подвижной системе отсчета (ПСО), связанной с центром масс гранаты, в момент взрыва гранаты, все одинаковые (по условию задачи) осколки будут иметь скорость v^* .

Максимальной (в ЛСО) будет скорость того осколка, у которого скорость v* будет совпадать по направлению с vгор.

Тогда, по условию задачи:

$$v1 = v0 \cos\alpha + v^*$$
.

Отсюда находим:

$$v^* = v1 - v0 \cos \alpha$$
.

Из физических соображений понятно, что первым упадет на землю тот осколок, у которого скорость v^* направлена вертикально вниз. Это означает, что искомая (в ЛСО) скорость и будет равна геометрической сумме взаимно перпендикулярных по направлениям скоростей: $vrop = v0 \cos \alpha$ и $v^* = v1 - v0 \cos \alpha$.

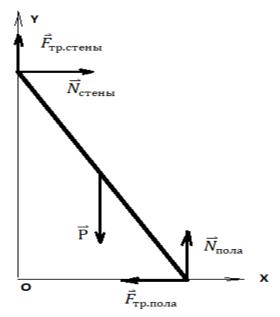
Для нахождения и применяем теорему Пифагора и получаем ответ. Ответ:

$$u = \sqrt{v_1^2 - 2v_1v_0\cos\alpha + 2v_0^2\cos^2\alpha}$$

Задача 4. (20 баллов). Однородный щит, имеющий форму прямоугольника, стоит на горизонтальном полу прислоненным к стене. Коэффициенты трения скольжения щита о пол k_{π} и стену k_{c} известны. При каком минимальном угле наклона α щита к полу щит не будет скользить по полу?

Решение:

Сделаем рисунок к задаче, и обозначим на нем все силы, действующие на щит.



Обозначения сил и их физический смысл понятны. Вес щита Р (из-за его однородности) приложен к его середине.

Запишем условие равновесия сил, действующих на щит, в проекциях на горизонтальную (X) и вертикальную (Y) оси:

$$N_{\text{стены}} = F_{\text{тр. пол.}},$$
 $P = N_{\text{пол.}} + F_{\text{тр. стены}}.$

С учетом хорошо известных соотношений:

$$\begin{aligned} F_{\text{тр.пол.}} &= k_{\text{пол.}} \ N_{\text{пол.}}, \\ F_{\text{тр. стены}} &= k_{\text{стены}} \ N_{\text{стены}}, \end{aligned}$$

условия равновесия сил примут вид:

$$N_{
m crehы} = k_{
m non.} \ N_{
m non.},$$
 $P = N_{
m non.} + k_{
m crehы} \ N_{
m crehы} = N_{
m non.} + k_{
m crehы} \ k_{
m non.} \ N_{
m non.} = N_{
m non.} (1 + k_{
m crehы} \ k_{
m non.}).$

Окончательно из условий равновесия сил получаем:

$$P = N_{\text{пол.}}(1 + k_{\text{стены}} k_{\text{пол.}}).$$

Запишем условие равновесия моментов сил, действующих на щит, относительно точки касания лестницей пола:

$$P\frac{L}{2}\cos\alpha = N_{\text{стены}}L\sin\alpha + F_{\text{тр. стены}}L\cos\alpha.$$

После подстановки в последнюю формулу $F_{\text{тр. стены}}$ и ранее найденной P получим:

$$k_{\text{стены}} k_{\text{пол.}} + 2 tg \alpha k_{\text{пол.}} = 1.$$

Отсюда следует ответ.

 $\frac{1}{2} tg \ \alpha = \frac{1 - k_{\Pi} k_{C}}{2 k_{C}}$. при $k_{\Pi} = 0$ равновесие возможно лишь при $\alpha = \pi/2$.

Задача 5. (30баллов). В горизонтально расположенном цилиндрическом сосуде длины L находятся n подвижных, физически бесконечно тонких, теплонепроницаемых поршней, делящих сосуд на n+1 отсек. Первоначально объемы всех отсеков одинаковы, температура газов во всех отсеках равна ТО. Затем газ в самом левом отсеке нагревают до температуры Т (Т>Т0). При этом в других отсеках поддерживают прежнюю температуру T0. На какое расстояние ΔL сместится самый правый поршень?

Решение:

Начальное состояние газа во всем цилиндрическом сосуде описывается уравнением состояния:

$$P_0V_{\text{цил.}} = \nu RT_0.$$

Число молей газа в каждом отсеке v_1 до и после нагревания самого левого отсека одинаково и равно:

$$\nu_1 = \frac{\nu}{n+1}.$$

Тогда число молей в самом левом отсеке $\nu_{\scriptscriptstyle \rm I}$ и во всех остальных (правых) отсеках $v_{\text{прав.}}$ соответственно равны:

$$u_{_{\mathrm{ЛВВ.}}} =
u_{_{1}} = \frac{
u}{n+1}.$$
 $u_{_{\mathrm{Прав.}}} = n
u_{_{1}} = \frac{n}{n} \frac{
u}{n+1}.$

Запишем уравнение состояния газов в самом левом и во всех правых отсеках соответственно после нагревания <u>самого левого</u> отсека: $P\ V_{\text{лев}} = \frac{\nu}{n+1}\ RT, \\ P\ V_{\text{прав.}} = \frac{n\ \nu}{n+1}\ RT_0,$

$$P V_{\scriptscriptstyle{\mathrm{Л}\mathrm{BB}}} = rac{
u}{n+1} RT, \ P V_{\scriptscriptstyle{\mathrm{П}\mathrm{P}\mathrm{BB}}} = rac{n}{n+1} RT_{\mathrm{0}},$$

Поделив друг на друга последние выражения, получим отношение объемов, которые занимают нагретый газ в самом левом отсеке и газ во всех остальных (правых отсеках):

$$\frac{V_{\text{лев.}}}{V_{\text{прав.}}} = \frac{T}{n T_0}.$$

При этом должно выполняться равенство (условие постоянства объема всего цилиндрического сосуда длины L):

$$V_{\text{лев.}} + V_{\text{прав.}} = V_{\text{цил.}}$$

Из последних двух выражений находим:

$$V_{\text{Лев.}} = V_{\text{ЦИЛ.}} \frac{T}{T + nT_0}$$

$$V_{\text{прав.}} = V_{\text{цил.}} \frac{nT_0}{T + nT_0}$$

Из последнего выражения найдем объем, приходящийся на <u>каждый</u> правый отсек:

$$V_{1,\text{прав.}} = V_{\text{цил.}} \frac{T_0}{T + nT_0}.$$

До нагревания самого левого отсека, на каждый отсек приходился объем

$$V_{\text{Haq.}} = \frac{V_{\text{цил.}}}{n+1}$$

Тогда, чтобы найти расстояние ΔL (на которое сместится <u>самый</u> правый поршень) после нагревания <u>самого левого</u> отсека, надо из последнего выражения вычесть предпоследнее выражение, и результат поделить на площадь сечения цилиндрического сосуда S

$$\Delta L = \frac{1}{S} \left[\frac{V_{\text{цил.}}}{n+1} - V_{\text{цил.}} \frac{T_0}{T+nT_0} \right]$$

Проведя простые преобразования (с учетом естественного соотношения $V_{\text{цил.}} = S \; L$), получим ответ.

Other:
$$\Delta L = L \frac{T - T_0}{(n+1)(T + nT_0)}$$